RESEARCH PAPER

Rhein inhibits cell proliferation of glioblastoma multiforme cells by regulating the TGF-ß and apoptotic signaling pathways

Sümeyra Çetinkaya

Biotechnology Research Center, Field Crops Central Research Institute, 06170, Ankara, Türkiye

How to cite:

Çetinkaya, S. (2024). Rhein inhibits cell proliferation of glioblastoma multiforme cells by regulating the TGF-ß and apoptotic signaling pathways. *Biotech Studies*, 33(1), 67-73. <u>http://doi.org/10.38042/biotechstudies.1472022</u>.

Article History

Received 10 September 2023 Accepted 26 March 2024 First Online 22 April 2024

Corresponding Author

Tel.: +09 541 575 31 96 E-mail: sumeyracetinkaya0@gmail.com

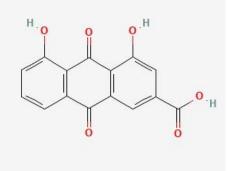
Keywords

Apoptosis Cell viability Colony formation Rhein TGF-ß

Copyright

This is an open-access article distributed under the terms of the <u>Creative Commons Attribution 4.0</u> <u>International License (CC BY).</u>

Introduction


Rhein, scientifically 4,5known as dihydroxyanthraquinone-2-carboxylic acid, represents a lipophilic anthraquinone compound identified as a metabolite in various plants, including the Rheum species (R. tanguticum, R. officinale, R. palmatum L.) (Polygonaceae), Cassia tora L. (Fabaceae), Polygonum multiflorum Thunb., *Aloe barbadensis* Miller (Asphodelaceae) and P. cuspidatum (Polygonaceae) (Figure 1) (Zhou et al., 2015). From an ethnobotanical perspective, these plants are traditionally used for treating inflammation, diabetes, bacterial, and helminthic infections (Henamayee et al., 2020). Pharmacologically, several studies have demonstrated its hepatoprotective (Bu et al., 2018), nephroprotective (Meng et al., 2015), anti-inflammatory (Wang et al.,

Abstract

Rhein (4,5-dihydroxyanthraquinone-2-carboxylic acid) is a plant metabolite found in rhubarbs. It inhibits cell proliferation and stimulates apoptosis in *in vivo* and *in vitro*. However, research into the molecular mechanisms of action is insufficient for recommending it as a therapeutic agent. Therefore, this study aims to investigate the antiproliferative, apoptotic, and antimetastatic effects of rhein by targeting the TGF-B signaling pathway, and apoptotic pathway in glioblastoma cells (U87 GBM). In this study, the XTT assay was utilized to determine cell viability, the colony formation assay to measure cell survival and proliferation, RT-qPCR for the analysis of gene expressions, and ELISA for the detection of proteins. U87 GBM cells were treated with varying concentrations of rhein (5-100 µM) in a time-dependent manner (24, 48 h), after which the percentage of cell viability was calculated. The colony formation assay was performed by treating cells with the IC₅₀ dose of rhein. According to the XTT assay, the IC₅₀ dose of rhein was determined as 10 μ M at 24 h. The ability to form colonies was significantly decreased in the cells of the treatment group. According to the gene expression analysis, rhein increased the mRNA levels of CASP3, -8, -9, BAX, and TGF-81 genes, while a notable decrease was observed in the BCL-2, SMAD2, SMAD3, and TIMP1 genes. In conclusion, it was determined that rhein induces apoptosis via the non-canonical TGF-β pathway.

2020), antioxidant (Xu et al., 2017), anticancer (Henamayee et al., 2020), and antimicrobial (Nguyen & Kim, 2020) activities. Because of these bioactivities, its use in the treatment and prevention of various diseases, such as osteoarthritis, hepatic disorders, and cancer, has been extensively researched.

Despite recent significant advances in cancer treatment, the search for therapeutic agents from plantderived sources continues to be popular due to drug resistance and lower side effects (<u>Atanasov et al., 2015</u>). In this regard, chemotherapeutic drugs such as paclitaxel (taxol), vincristine, vinblastine, and docetaxel are effective drugs that are still used clinically (<u>Habtemariam & Lentini, 2018</u>). Rhein has been found to suppress the growth and proliferation of diverse cancers, such as breast cancer (<u>Chang et al., 2012</u>), pancreatic cancer (<u>Yang et al., 2019</u>), hepatocellular carcinoma (<u>Wang et al., 2020</u>), colon cancer (<u>Zhang et</u> <u>al., 2021</u>), and lung cancer (<u>Yang et al., 2019</u>). These studies have determined that rhein can modulate different signaling steps in its molecular action mechanisms, thereby stimulating cell apoptosis and suppressing invasion and metastasis. Considering the current information, studies on the potential of rhein to be a therapeutic agent against cancer are intriguing. However, studies that elucidate its mechanism of action at the cellular and molecular levels are insufficient to recommend it as an effective therapeutic agent.

In recent times, within the context of discovering potential therapeutic agents, the transforming growth factor- β (TGF- β) signaling pathway has emerged as a major focus due to its key roles in diseases such as pancreatic cancer and its dual functionality (Tewari et al., 2022). This pathway is intricately linked to apoptotic processes, serving as a critical mediator in both promoting and inhibiting cell death, depending on the cellular context (<u>Ramesh et al., 2009</u>). The TGF-β pathway, through its complex interactions with downstream molecules, can trigger apoptosis by influencing the expression of genes directly involved in the cell death mechanism (Sánchez-Capelo, 2005). In light of this, the current study seeks to delve into the antiproliferative, apoptotic, and antimetastatic effects of rhein on glioblastoma cells (U87 GBM) by specifically targeting the TGF- β signaling and apoptotic pathways. Toward this goal, an extensive analysis has been conducted on the effects of rhein against U87 GBM cells, focusing on cell survival, proliferation, apoptotic, and metastatic effects regulated through the TGF-β pathway. For the gene expression changes, the expressions of TGF-81, SMAD1, SMAD2, and TIMP1, which are associated with the TGF- β pathways, as well as apoptotic-related genes CASP3, CASP8, CASP9, BAX, and BCL-2, have been examined. This provides an understanding of how TGF-β signaling can direct cellular fate towards apoptosis. The ability of cancer cells to form colonies is considered a significant indicator of their proliferation and metastatic potential, reflecting the progression of the disease and the capacity to develop resistance to treatment. Inhibiting colony formation can prevent the spread of cancer cells and the growth of tumors, thereby enhancing the effectiveness of therapeutic strategies and aiding in the control of the disease. In this context, the colony-forming capacity of U87 GBM cells and the effect of rhein on this capacity have been investigated.

Materials and Methods

Cell culture and treatment

The U87 GBM cell line was obtained from the American Type Culture Collection (ATCC) (Virginia, USA). The cells were grown in Dulbecco's Modified Eagle Medium (DMEM-F12) (Sigma-Aldrich, USA) enriched with 10% fetal bovine serum (FBS) (Capricorn, Germany) and 100 U/ml of penicillin-streptomycin (10 mg/mL) (Capricorn Scientific, Ebsdorfergrund, Germany). The cells cultivated at a temperature of 37° C and a CO₂ level of 5%. Rhein was purchased from Sigma-Aldrich (R7269 Merck; Germany) and dissolved in 0.1% DMSO at room temperature to make a stock solution. The solution was then stored at -20°C until used.

Cell viability assay

The XTT cell proliferation assay was employed to determine the cytotoxic effect of rhein on U87 cells, according to the manufacturer's instructions (Biological Industries, 20-300-1000). U87 cells were seeded (2x10³ cells/well) into 96-well plates. U87 cells were distributed into 96-well plates at a density of 2x10³ cells per well. After a 24 h incubation period, the cells were exposed to various concentrations of rhein, ranging from 5-10-15-20-30-40-50-75-100 µM, and incubated for additional periods of 24 and 48 h. The XTT solution was added to each of the wells and the plates were incubated for 4 h. Following incubation, the absorbance of the samples was measured using an ELISA microplate reader (BioTek, Epoch) at a wavelength of 450 nm, with 630 nm serving as the reference absorbance. To evaluate the cytotoxic efficacy of the rhein, IC₅₀ values of the samples were calculated.

Colony formation assay

The method commonly known as "colony formation" is widely employed for examining the survival and proliferation capabilities of cancerous cells. In this study, the colony formation assay was carried out to evaluate the colony forming capacity of rhein on U87 GBM cells. Cells were seeded in 6-well plates at a density of 2x10³ cells per well and then incubated for 24 h. After the incubation period, the cells were treated with rhein and then subcultured every two days. The media were washed with PBS at the end of day 10 and fixed with 100% methanol at -20 °C. Then, the colony numbers of the control and dose groups were determined by staining with 1.0% crystal violet for 10 min and photographed with an inverted microscope. Colony

forming capacity was calculated according to colony forming numbers in each group (<u>Güclü et al., 2022</u>).

Total RNA extraction, cDNA synthesis, and RT-qPCR

The expression changes of the apoptosis and TGFβ signal-related genes were evaluated using real time quantitative polymerase chain reaction (RT-qPCR) analysis. U87 GBM cells were seeded in 6-well plates at a density of 2.5x10⁴ cells per well and then incubated for 24 h at 37°C in an atmosphere containing 5% CO². Subsequently, cells were treated with the IC₅₀ dose of rhein, and then total RNA isolation was performed with RiboEx reagent (GeneAll, 301-001). Each of the RNA sample concentrations and quality were measured using a nanodrop spectrophotometer (Thermo Scientific, USA). The DNase I enzyme (Thermo Scientific, USA) was used to avoid possible DNA contamination. Then, the purified RNAs were reversed into cDNA via the iScriptTM Kit (Bio-Rad, cDNA Synthesis 170-8891). То quantitatively assess mRNA expression levels, the BrightGreen 2x qPCR MasterMix (abm, Canada) was utilized as per the instructions provided by the manufacturer. The expression levels of CASP3, CASP8, CASP9, BAX, and BCL-2 genes in the apoptosis pathway and TGF-81, SMAD2, SMAD3, and TIMP1 genes in the TGF-β pathway were assessed using SYBR in RT-qPCR analysis, conducted on an Applied Biosystems (Foster City, California, USA) instrument. The primer sequences for the studied genes were sourced from IDT PrimerQuest

(https://eu.idtdna.com/Primerquest/Home/Index). The oligonucleotide sequences utilized in the RT-qPCR reactions are listed in <u>Table 1</u>. The conditions for the RT-qPCR were set at 95°C for 4 min, followed by 40 amplification cycles, each consisting of 95°C for 10 s, 60°C for 60 s, and 72°C for 4 min.

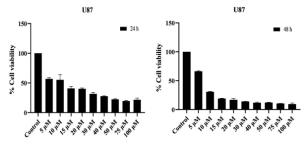
 $\label{eq:table_$

Gene Name	Primer Sequences
GAPDH	F: 5-GTCAACGGATTTGGTCGTATTG-3
	R: 5-TGTAGTTGAGGTCAATGAAGGG-3
CASP3	F:5-GAGCCATGGTGAAGAAGGAATA-3
	R:5-TCAATGCCACAGTCCAGTTC-3
CASP8	F:5-GCCCAAACTTCACAGCATTAG-3
	R:5-GTGGTCCATGAGTTGGTAGATT-3
CASP9	F:5-CGACCTGACTGCCAAGAAA-3
	R:5-CATCCATCTGTGCCGTAGAC-3
BAX	F:5-GGAGCTGCAGAGGATGATTG-3
	R:5-GGCCTTGAGCACCAGTTT-3
BCL-2	F:5-GTGGATGACTGAGTACCTGAAC-3
	R:5-GAGACAGCCAGGAGAAATCAA-3
TIMP1	F:5-GTCAACCAGACCACCTTATACC-3
	R:5-TATCCGCAGACACTCTCCA-3
SMAD2	F: 5-GGGACTGAGTACACCAAATACG-3
	R: 5-TACCTGGAGACGACCATCAA-3
SMAD3	F: 5-CCTGAGTGAAGATGGAGAAACC-3
	R: 5-GGCTGCAGGTCCAAGTTATTA-3
TGF-81	F: 5-CGTGGAGCTGTACCAGAAATAC-3
	R: 5-CTAAGGCGAAAGCCCTCAAT-3

Caspase-3 and caspase-9 activation analysis

Apoptosis was assessed following the manufacturer's guidelines by using a caspase-3 and

caspase-9 colorimetric assay kit from BioVision, CA, USA. The assay identifies DNA fragmentation in the cytoplasm of apoptotic cells. To detect apoptosis, U87 cells were distributed into 96-well plates at a density of 5x10⁵ cells per well and incubated for 24 h. At the end of the incubation, the cells were treated with inhibitory concentrations of rhein. The cells were then collected and combined with 50 µL of lysis buffer, followed by a 10-min incubation on ice. Subsequently, 50 µL of 2X reaction buffer was added to each cytoplasmic fraction. Lastly, 5 µL of caspase-3 substrate Asp-Glu-Val-Asp (DEVD)-p-nitroaniline (pNA) and caspase-9 substrate Ac-Leu-Glu-His-Asp (LEHD)-pNA were incorporated into the protein cell lysate of each well. Incubation at 37°C for a duration of 2 h was carried out for all samples. Following this incubation period, absorbance readings were taken at 405 nm using a microplate reader (Bio Rad Laboratories, CA, USA). The alteration in caspase-3 and caspase-9 activity was calculated by dividing the measurements from the samples treated with rhein by those from the untreated control samples.


Statistical analysis

All findings were expressed as the mean ± standard deviation (SD). The GraphPad Prism software (version 10.0.2, GraphPad Software, La Jolla, CA) was employed to conduct a comparative analysis between the control and treatment groups using Student's t-test and one-way ANOVA test.

Results

Rhein inhibits the cell viability on U87 GBM cells

The concentrations and time periods of rhein on U87 GBM cells were evaluated using the XTT assay. Figure 2 demonstrates that administering 5-100 μ M of rhein to the U87 GBM cell line for 24 and 48 h resulted in a dose- and time-dependent reduction in cell viability. The XTT assay showed that rhein treatment for 24 h (IC₅₀ 10 μ M) resulted in significant cell viability against the control cells. According to this result, the concentration of 10 μ M was chosen as an effective dose in the subsequent analysis (Figure 2).

Figure 2. The cytotoxic effect of rhein on U87 GBM cell line. The cells were treated with control and rhein (5-10-15-20-30-40-50-60-75-100 μ M) for 24 and 48 h. The XTT cell proliferation assay was used for the detection of IC₅₀ values. The dose and control groups were subjected to least three independent experiments.

Rhein supressed the colony formation in U87 GBM cells

The colony analysis results showed that the IC_{50} dose of rhein significantly suppressed the colony formation capacities of U87 GBM cells after the treatment. The colony numbers were 582 ± 15.56 for the control group and 151 ± 10.08 for the rhein-treated group (***p<0.001) (Figure 3).

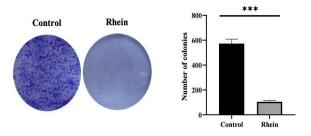
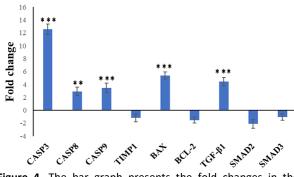



Figure 3. Rhein inhibits cell viability and colony formation of U87 GBM cells. The figure shows the colony formation of the U87 GBM cells treated with rhein for 48 h. The untreated cells were used as a control. The effect of rhein on colony formation is presented by comparing it with the control value. The results are presented as the mean \pm standard deviation (std), with a sample size of 5 (n=5), and a significance level of ***p<0.001.

Rhein promoted apoptosis through TGF- β mediated pathway

The impact of rhein on cell death in U87 GBM cells was assessed using RT-qPCR analysis. After the treatment of rhein, the relative expression levels of apoptosis-related genes (*CASP3*, *CASP8*, *CASP9*, *BAX*, and *BCL-2*) were analyzed using RT-qPCR. In the gene expression results, the expression levels of *CASP3* (12.55 \pm 0.8, p=0.00073), *CASP8* (2.94 \pm 0.68, p=0.0016), *CASP9* (3.48 \pm 0.75, p=0.00024), *BAX* (5.39 \pm 0.55, p=0.00042), and *TGF-61* (4.44 \pm 0.65, p=0.00018) genes were significantly increased after the rhein treatment. In addition, *BCL-2* (-1.54 \pm 0.46, 0.00031), *SMAD2* (-2.1 \pm 0.7, p=0.0165), *SMAD3* (-1.04 \pm 0.51, p=0.033), and *TIMP1* (-1.17 \pm 0.6, p= 0.0037) genes were significantly decreased after the rhein treatment (Figure 4).

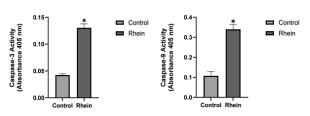


Figure 4. The bar graph presents the fold changes in the expressions of the selected genes, indicating the means of the significant fold changes compared to the control (*p <0.05, *** p <0.001).

Rhein modulates caspase-3 and caspase-9 activity in U87 GBM cells

To investigate the involvement of caspase-3 and caspase-9 in the apoptosis induced by rhein, the

enzymatic activities of effector caspase (caspase-3) and initiator caspase (caspase-9) were examined. The findings revealed an increase in the activities of caspase-3 and caspase-9 following treatment with rhein. Specifically, the activities of caspase-3 and caspase-9 increased ~2 fold and ~2.5 fold, respectively, at a concentration of 10 μ M compared to the control (Figure 5).

Figure 5. The activity of caspase-3 and caspase-9 after the rhein treatment. The colorimetric ELISA assay was employed to measure the activities of caspase-3 and caspase-9. These activities were then normalized to control cells and represented as a fold change. Consequently, there was an elevation in the activities of caspase-3 and caspase-9 following administration of rhein when compared to the control. Data are presented as mean \pm standard deviation (std) with a sample size of 3 (n=3) and a significance level of *p <0.05.

Discussion

Rhein, an anthraquinone metabolite common in Rheum species, is an important metabolite used in pathological conditions such as inflammation, diabetes, osteoarthritis, and bacterial infections (Moldovan et al., 2000; Hu et al., 2019). Recent evidence has proven that rhein exerts potent antitumor effects in different cancer cell lines (Yang et al., 2019; Chen et al., 2020; Wei et al., 2022). The current research was investigated antiproliferative, apoptotic and antimetastatic effects of rhein in the U87 GBM cell line. First, the results of this study showed that rhein suppressed U87 cell proliferation in time- and dose-dependent manner. The IC₅₀ dose that half of the maximal inhibitory concentration value was detected as 10 µM at 24 h (Figure 2). In the literature, there are limited studies about the antiproliferative effect on U87 cells of rhein. There are only two studies investigating the antiproliferative activity of rhein on U87 cell lines. One of these studies determined the IC₅₀ dose of rhein as 40 µM in 72 h in glioblastoma cell lines (T98G, U87, and U251) (Chen et al., 2020). The other study detected the IC₅₀ dose of rhein lysinate (the salt of rhein) by MTT assay as 160 µmol/L at 48 h. In this study, the detection of lower doses and times in higher cytotoxic activity may be due to the fact that the XTT assay is more sensitive than the MTT assay. In addition, they determined a high cytotoxic effect of rhein-piperazine-dithiocarbamate hybrids 3 synthesized from rhein against A549, PC-9 and H460 cell lines at low dose (IC₅₀= $10.81-23.78 \mu g/mL$) (Wei et al., 2022). This finding, which is similar to the presented study, confirms the cytotoxic activity of rhein in U87 GBM cells (Figure 2).

TGF- β plays a pivotal role in a myriad of cellular processes, including cell proliferation, migration, apoptosis, embryogenesis, and tissue homeostasis, serving as a double-edged sword in the context of cancer development and progression (Hata & Chen, 2016). The complexity of the TGF- β signaling pathway, regulated by its ligands, type 1 and type 2 receptors, and Smad proteins, unfolds through both SMAD-dependent and SMAD-independent mechanisms. Upon ligand binding, SMAD 2 and 3 undergo phosphorylation, forming heteromeric complexes with SMAD 4 that translocate to the nucleus to modulate the expression of target genes (Xu et al., 2012). In pancreatic cancer, TGF- β 's role oscillates between tumor suppression in the early stages to tumor promotion in the advanced stages, largely influenced by the tumor stage and microenvironment (<u>Yang et al., 2021</u>). This duality extends to its ability to induce apoptosis in various cell types, including prostate cells, hepatocytes, and B lymphocytes, showcasing the pathway's intricate involvement in cancer biology (Shen et al., 2017; Yang et al., 2021). In the present study, upon administering a toxic dose of rhein to U87 GBM cells, a notable upregulation of the TGF-81 gene expression by 4.44 fold was observed, signifying an activation or enhancement of the TGF- β signaling pathway. In the pathogenesis of glioblastoma, increased expression of TGF-β1 can modify the cellular microenvironment to support tumor progression or trigger the apoptotic pathway to promote the death of tumor cells. The increase in TGF-61 gene expression by rhein suggests a mechanism by which this molecule activates tumor-suppressive properties, thereby encouraging the death of glioblastoma cells. Given the lack of research specifically addressing rhein's efficacy against cancer cells in relation to the TGF- β pathway, our findings have been compared with existing studies to provide context. Zhu and colleagues' study revealed that rhein dosedependently inhibits the mRNA expression and protein production of plasminogen activator inhibitor-1 (PAI-1) in endothelial cells induced by TGF- β 1 (<u>Zhu et al., 2003</u>). When compared to the findings of this study, it is possible to suggest that rhein can modulate the TGF-B signaling pathway in both normal and cancerous cells, and its effects on this pathway may vary depending on the cell type. Furthermore, the research of Guo and colleagues demonstrated that rhein inhibited cell hypertrophy and extracellular matrix (ECM) accumulation mediated by TGF-B1, suggesting a renoprotective effect of rhein, possibly through inhibiting the overexpression of TGF- β 1 (Guo et al., 2001). This evidence, alongside our findings, suggests that rhein's ability to modulate the TGF-B pathway extends beyond cancer cells to include protective effects in renal tissues, highlighting the compound's broad therapeutic potential. Our results, showing rhein's modulation of TGF-B pathway components in cancer cells, complement Guo et al.'s observations by illustrating the versatile impact of rhein across different

cell types and pathological conditions. Besides, the expressions of SMAD2, SMAD3, and TIMP1 genes were downregulated, with respective fold changes of -2.1, -1.04, and -1.17. The observed decrease in the expression of SMAD2 and SMAD3 under rhein treatment may indicate the promotion of cell death through noncanonical mechanisms of the TGF- β signaling pathway. The decrease in SMAD2 and SMAD3 expressions could be mitigating the pro-tumorigenic effects of TGF-β in the later stages of cancer. This mechanism, consistent with the cytotoxic effects of rhein observed in U87 GBM cells, could contribute to the suppression of tumor growth and metastasis via the TGF-B pathway. This situation suggests that targeting the TGF- β pathway could be a potential approach in the treatment of cancer types such as glioblastoma. Moreover, the decrease in TIMP1 gene expression might have significant effects on the remodeling of the ECM and tumor invasion (Rojiani et al., 2015). TIMP1 functions as an inhibitor of matrix metalloproteinases (MMPs), preventing tumor cells from crossing the ECM. However, the reduced expression of TIMP1 could promote the remodeling of the ECM and potentially make tumor cells less invasive. This could contribute to the antimetastatic properties of rhein and aid in suppressing the progression of glioblastoma.

Apoptosis can be induced by mitochondriamediated and death receptor-mediated pathways. These pathways lead to the activation of effector caspases such as caspase-3 and caspase-8. In terms of the apoptotic mechanism, TGF-β increases the expression levels of antiapoptotic protein BCL-2 and proapoptotic caspase-3 and caspase-8 (Yang et al., 2019). A study investigating the apoptotic effect of rhein in HepaRG cells showed that levels of BAX, cleaved caspase-3, -8, -9, and PARP increased while BCL-2 decreased (You et al., 2018). It has also been reported that rhein induces mitochondrial apoptosis in a caspasedependent manner in PANC-1 and MIAPaCa-2 cell lines, characterized by the downregulation of BCL-2, BCL-xL, survivin, and XIAP, and upregulation of cleaved caspase-3, -9 and PARP (Liu et al., 2022). Moreover, Tang et al. (2017) showed that rhein triggers apoptotic and autophagic mechanisms, correlating with changes in the expression of CASP3, BAX, Beclin-1, and BCL-2 genes in rat F98 glioma cells. In the present study, treatment with rhein caused an increase in the mRNA expression levels of CASP3 (12.55 fold), CASP8 (2.94 fold), CASP9 (3.48), and BAX (5.39) in U87 cells. However, with a decrease in BCL-2 (-1.54 fold) mRNA level, rhein triggered the mitochondria-mediated induction of apoptosis. Furthermore, а significant increase in the concentrations of caspase-3 and caspase-9 proteins compared to the control provides confirmatory evidence for gene expression analysis. In conclusion, the ability of rhein to induce apoptosis could be considered a potential therapeutic strategy in the treatment of aggressive cancer types such as glioblastoma. This highlights the development of new approaches in cancer

therapy by targeting apoptotic pathways as well as modulating the tumor microenvironment.

There are no existing findings in the literature regarding the effect of rhein on the colony-forming capacity of glioblastoma cells. However, it has been reported that rhein inhibits colony formation in colorectal (Zhuang et al., 2019; Zhang et al., 2021), and lung (Yang et al., 2019; Liu et al., 2022) cells. In a study conducted on human NSCLC cell lines, it was demonstrated that rhein inhibits the STAT3 signaling pathway and increases the expression level of the proapoptotic protein BAX while decreasing the expression level of the antiapoptotic protein BCL-2. Furthermore, a colony formation assay similarly confirmed that rhein promotes apoptosis in human NSCLC cell lines, thereby inhibiting growth and proliferation (Yang et al., 2019). In another study assessing the anticancer activity of rhein against colorectal cancer (CRC) cells, cell viability and anchorage-independent colony formation assays showed that rhein inhibits the mTOR signaling pathway, demonstrating anticancer activity against CRC (Zhang et al., 2021). Similarly, a study by Liu and colleagues (2022) showed that rhein suppresses the proliferation and lung migration of cancer cells via the Stat3/Snail/MMP2/MMP9 signaling pathway. Lastly, a study conducted by Zhang and colleagues revealed that rhein inhibits the AKT/mTOR signaling pathway in oral cancer cells, inducing the accumulation of reactive oxygen species (ROS) and cell apoptosis (Zhang et al., 2023). In the current research, the findings from the colony analysis indicated that the ability of U87 cells to form colonies was significantly reduced following treatment with rhein. The colony formation ability and cell viability assay collectively suggest the potential antiproliferative activity of rhein on U87 cells. These findings show an antimetastatic property by causing an increase in TGF-81 level with a decrease in rhein TIMP1 level, stimulating mitochondria-mediated apoptosis, and supporting apoptosis mediated by SMADindependent pathway.

In conclusion, considering all these data, the fact that rhein exhibits antiproliferative, apoptotic, and cytotoxic activities by modulating TGF- β and apoptosis pathways makes it valuable for detailed studies regarding its clinical use.

References

Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M., & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology advances, 33(8), 1582–1614.

https://doi.org/10.1016/j.biotechadv.2015.08.001

Bu, T., Wang, C., Meng, Q., Huo, X., Sun, H., Sun, P., Zheng, S., Ma, X., Liu, Z., & Liu, K. (2018). Hepatoprotective effect of rhein against methotrexate-induced liver toxicity. *European journal of pharmacology*, *834*, 266–273.

https://doi.org/10.1016/j.ejphar.2018.07.031

Chang, C. Y., Chan, H. L., Lin, H. Y., Way, T. D., Kao, M. C., Song, M. Z., Lin, Y. J., & Lin, C. W. (2012). Rhein induces apoptosis in human breast cancer cells. *Evidence-based complementary and alternative medicine: eCAM*, 2012, 952504.

https://doi.org/10.1155/2012/952504

- Chen, J., Luo, B., Wen, S., & Pi, R. (2020). Discovery of a novel rhein-SAHA hybrid as a multi-targeted anti-glioblastoma drug. *Investigational new drugs*, *38*(3), 755–764. <u>https://doi.org/10.1007/s10637-019-00821-4</u>
- Guo, X. H., Liu, Z. H., Dai, C. S., Li, H., Liu, D., & Li, L. S. (2001). Rhein inhibits renal tubular epithelial cell hypertrophy and extracellular matrix accumulation induced by transforming growth factor beta1. Acta pharmacologica Sinica, 22(10), 934–938.
- Güçlü, E., Çınar Ayan, İ., Dursun, H. G., & Vural, H. (2022). Tomentosin induces apoptosis in pancreatic cancer cells through increasing reactive oxygen species and decreasing mitochondrial membrane potential. *Toxicology in vitro: an international journal published in association with BIBRA, 84*, 105458. <u>https://doi.org/10.1016/j.tiv.2022.105458</u>
- Habtemariam, S., & Lentini, G. (2018). Plant-Derived Anticancer Agents: Lessons from the Pharmacology of Geniposide and Its Aglycone, Genipin. *Biomedicines*, 6(2), 39.

https://doi.org/10.3390/biomedicines6020039

- Hata, A., & Chen, Y. G. (2016). TGF-β Signaling from Receptors to Smads. *Cold Spring Harbor perspectives in biology*, *8*(9), a022061. <u>https://doi.org/10.1101/cshperspect.a022061</u>
- Henamayee, S., Banik, K., Sailo, B. L., Shabnam, B., Harsha, C., Srilakshmi, S., Vgm, N., Baek, S. H., Ahn, K. S., & Kunnumakkara, A. B. (2020). Therapeutic Emergence of Rhein as a Potential Anticancer Drug: A Review of Its Molecular Targets and Anticancer Properties. *Molecules* (*Basel, Switzerland*), 25(10), 2278. https://doi.org/10.3390/molecules25102278
- Hu, F., Zhu, D., Pei, W., Lee, I., Zhang, X., Pan, L., & Xu, J. (2019).
 Rhein inhibits ATP-triggered inflammatory responses in rheumatoid rat fibroblast-like synoviocytes.
 International immunopharmacology, 75, 105780. https://doi.org/10.1016/j.intimp.2019.105780
- Liu, J., Ding, D., Liu, F., & Chen, Y. (2022). Rhein Inhibits the Progression of Chemoresistant Lung Cancer Cell Lines via the Stat3/Snail/MMP2/MMP9 Pathway. *BioMed research international*, 2022, 7184871. https://doi.org/10.1155/2022/7184871
- Meng, Z., Yan, Y., Tang, Z., Guo, C., Li, N., Huang, W., Ding, G., Wang, Z., Xiao, W., & Yang, Z. (2015). Anti-hyperuricemic and nephroprotective effects of rhein in hyperuricemic mice. *Planta medica*, 81(4), 279–285. https://doi.org/10.1055/s-0034-1396241
- Moldovan F., Pelletier J. P., Jolicoeur F.-C., Cloutier J.-M., Martel-Pelletier J. (2000). Diacerhein and rhein reduce the ICE-induced IL-16 and IL-18 activation in human osteoarthritic cartilage. *Osteoarthritis and Cartilage*, *8*(3):186–196.

https://doi.org/10.1053/joca.1999.0289

Nguyen, A. T., & Kim, K. Y. (2020). Rhein inhibits the growth of *Propionibacterium acnes* by blocking NADH dehydrogenase-2 activity. *Journal of medical microbiology*, *69*(5), 689–696.

- https://doi.org/10.1099/jmm.0.001196
- Ramesh, S., Wildey, G. M., & Howe, P. H. (2009). Transforming growth factor beta (TGFbeta)-induced apoptosis: the rise & fall of Bim. Cell cycle (Georgetown, Tex.), 8(1), 11–17. <u>https://doi.org/10.4161/cc.8.1.7291</u>
- Rojiani, M. V., Ghoshal-Gupta, S., Kutiyanawalla, A., Mathur, S., & Rojiani, A. M. (2015). TIMP-1 overexpression in lung carcinoma enhances tumor kinetics and angiogenesis in brain metastasis. *Journal of neuropathology and experimental neurology*, 74(4), 293–304. <u>https://doi.org/10.1097/NEN.00000000000175</u>
- Sánchez-Capelo, Amelia. "Dual role for TGF-beta1 in apoptosis." Cytokine & growth factor reviews vol. 16,1 (2005): 15-34.
 - https://doi.org/10.1016/j.cytogfr.2004.11.002
- Shen, W., Tao, G. Q., Zhang, Y., Cai, B., Sun, J., & Tian, Z. Q. (2017). TGF-β in pancreatic cancer initiation and progression: two sides of the same coin. *Cell & bioscience*, 7, 39.
 - https://doi.org/10.1186/s13578-017-0168-0
- Tang, N., Chang, J., Lu, H. C., Zhuang, Z., Cheng, H. L., Shi, J. X., & Rao, J. (2017). Rhein induces apoptosis and autophagy in human and rat glioma cells and mediates cell differentiation by ERK inhibition. *Microbial pathogenesis*, *113*, 168–175. <u>https://doi.org/10.1016/j.micpath.2017.10.031</u>
- Tewari, D., Priya, A., Bishayee, A., & Bishayee, A. (2022). Targeting transforming growth factor-β signalling for cancer prevention and intervention: Recent advances in developing small molecules of natural origin. Clinical and translational medicine, 12(4), e795. <u>https://doi.org/10.1002/ctm2.795</u>
- Wang, A., Jiang, H., Liu, Y., Chen, J., Zhou, X., Zhao, C., Chen, X., & Lin, M. (2020). Rhein induces liver cancer cells apoptosis via activating ROS-dependent JNK/Jun/caspase-3 signaling pathway. *Journal of Cancer*, 11(2), 500–507.
 - https://doi.org/10.7150/jca.30381
- Wang, H., Yang, D., Li, L., Yang, S., Du, G., & Lu, Y. (2020). Antiinflammatory Effects and Mechanisms of Rhein, an Anthraquinone Compound, and Its Applications in Treating Arthritis: A Review. Natural products and bioprospecting, 10(6), 445–452. https://doi.org/10.1007/s13659-020-00272-y
- Wei, M. X., Zhou, Y. X., Lin, M., Zhang, J., & Sun, X. (2022). Design, synthesis and biological evaluation of rheinpiperazine-dithiocarbamate hybrids as potential anticancer agents. *European journal of medicinal chemistry*, 241, 114651. https://doi.org/10.1016/j.ejmech.2022.114651
- Xu, X., Lv, H., Xia, Z., Fan, R., Zhang, C., Wang, Y., & Wang, D. (2017). Rhein exhibits antioxidative effects similar to Rhubarb in a rat model of traumatic brain injury. *BMC* complementary and alternative medicine, 17(1), 140. <u>https://doi.org/10.1186/s12906-017-1655-x</u>

- Xu, P., Liu, J., & Derynck, R. (2012). Post-translational regulation of TGF-β receptor and Smad signaling. FEBS letters, 586(14), 1871-1884. https://doi.org/10.1016/j.febslet.2012.05.010
- Yang, L., Li, J., Xu, L., Lin, S., Xiang, Y., Dai, X., Liang, G., Huang, X., Zhu, J., & Zhao, C. (2019). Rhein shows potent efficacy against non-small-cell lung cancer through inhibiting the STAT3 pathway. *Cancer management and research*, 11, 1167–1176. https://doi.org/10.2147/CMAR.S171517
- Yang, L., Lin, S., Kang, Y., Xiang, Y., Xu, L., Li, J., Dai, X., Liang, G., Huang, X., & Zhao, C. (2019). Rhein sensitizes human pancreatic cancer cells to EGFR inhibitors by inhibiting STAT3 pathway. *Journal of experimental & clinical cancer research: CR*, 38(1), 31.

https://doi.org/10.1186/s13046-018-1015-9

Yang, Y., Ye, W. L., Zhang, R. N., He, X. S., Wang, J. R., Liu, Y. X., Wang, Y., Yang, X. M., Zhang, Y. J., & Gan, W. J. (2021). The Role of TGF- β Signaling Pathways in Cancer and Its Potential as a Therapeutic Target. *Evidence-based complementary and alternative medicine: eCAM*, 2021, 6675208.

https://doi.org/10.1155/2021/6675208

- You, L., Dong, X., Yin, X., Yang, C., Leng, X., Wang, W., & Ni, J. (2018). Rhein Induces Cell Death in HepaRG Cells through Cell Cycle Arrest and Apoptotic Pathway. *International journal of molecular sciences*, 19(4), 1060. <u>https://doi.org/10.3390/ijms19041060</u>
- Zhang, H., Yi, J. K., Huang, H., Park, S., Park, S., Kwon, W., Kim, E., Jang, S., Kim, S. Y., Choi, S. K., Kim, S. H., Liu, K., Dong, Z., Ryoo, Z. Y., & Kim, M. O. (2021). Rhein Suppresses Colorectal Cancer Cell Growth by Inhibiting the mTOR Pathway In Vitro and In Vivo. *Cancers*, *13*(9), 2176. https://doi.org/10.3390/cancers13092176
- Zhang, H., Ma, L., Kim, E., Yi, J., Huang, H., Kim, H., Raza, M. A., Park, S., Jang, S., Kim, K., Kim, S. H., Lee, Y., Kim, E., Ryoo, Z. Y., & Kim, M. O. (2023). Rhein Induces Oral Cancer Cell Apoptosis and ROS via Suppresse AKT/mTOR Signaling Pathway In Vitro and In Vivo. International journal of molecular sciences, 24(10), 8507. <u>https://doi.org/10.3390/ijms24108507</u>
- Zhou, Y. X., Xia, W., Yue, W., Peng, C., Rahman, K., & Zhang, H. (2015). Rhein: A Review of Pharmacological Activities. Evidence-based complementary and alternative medicine: eCAM, 2015, 578107. <u>https://doi.org/10.1155/2015/578107</u>
- Zhu, J., Liu, Z., Huang, H., Chen, Z., & Li, L. (2003). Rhein inhibits transforming growth factor beta1 induced plasminogen activator inhibitor-1 in endothelial cells. Chinese medical journal, 116(3), 354–359.
- Zhuang, Y., Bai, Y., Hu, Y., Guo, Y., Xu, L., Hu, W., Yang, L., Zhao, C., Li, X., & Zhao, H. (2019). Rhein sensitizes human colorectal cancer cells to EGFR inhibitors by inhibiting STAT3 pathway. *OncoTargets and therapy*, *12*, 5281– 5291.

https://doi.org/10.2147/OTT.S206833